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iagnosing  synaesthesia  with  online  colour  pickers:  Maximising  sensitivity  and
pecificity

icolas  Rothena,b,∗,  Anil  K.  Setha,c,  Christoph  Witzelb,  Jamie  Warda,b

Sackler Centre for Consciousness Science, University of Sussex, Brighton, UK
Department of Psychology, University of Sussex, Brighton, UK
Department of Informatics, University of Sussex, Brighton, UK

 i g  h  l  i  g  h  t  s

We report  an  optimised  method  for  diagnosing  synaesthesia.
We provide  several  measures  superior  to  those  commonly  used.
We  provide  reliable  cut-off  values  for  the  diagnosis  of synaesthesia.
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a  b  s  t  r  a  c  t

The  most  commonly  used  method  for formally  assessing  grapheme-colour  synaesthesia  (i.e., experiencing
colours  in  response  to letter  and/or  number  stimuli)  involves  selecting  colours  from  a  large  colour  palette
on several  occasions  and  measuring  consistency  of  the  colours  selected.  However,  the ability  to  diagnose
synaesthesia  using  this  method  depends  on  several  factors  that  have  not  been  directly  contrasted.  These
include  the  type  of  colour  space  used  (e.g.,  RGB,  HSV,  CIELUV,  CIELAB)  and  different  measures  of consis-
tency (e.g.,  city  block  and  Euclidean  distance  in colour  space).  This  study  aims  to find  the  most  reliable
way  of  diagnosing  grapheme-colour  synaesthesia  based  on  maximising  sensitivity  (i.e.,  ability  of a  test
to identify  true  synaesthetes)  and specificity  (i.e.,  ability  of a test  to  identify  true  non-synaesthetes).
We show,  applying  ROC  (Receiver  Operating  Characteristics)  to binary  classification  of a large  sample
pecificity
inary classification
OC

of self-declared  synaesthetes  and  non-synaesthetes,  that  the  consistency  criterion  (i.e.,  cut-off  value)
for diagnosing  synaesthesia  is  considerably  higher  than  the  current  standard  in  the field.  We  also  show
that methods  based  on  perceptual  CIELUV  and  CIELAB  colour  models  (rather  than  RGB  and  HSV  colour
representations)  and  Euclidean  distances  offer  an  even  greater  sensitivity  and  specificity  than  most  cur-
rently  used  measures.  Together,  these  findings  offer  improved  heuristics  for the  behavioural  assessment
of  grapheme-colour  synaesthesia.
. Introduction

Synaesthesia is a phenomenon characterised by involuntary and
nusual associations between and within different modalities (e.g.,
earing colours, tasting words). The developmental form of the con-
ition is associated with structural and functional differences in the
rain (Rouw et al., 2011) and a specific cognitive profile (e.g., Rothen

t al., 2012). A hallmark of synaesthesia is that an inducing stimulus
i.e., synaesthetic inducer) is consistently associated with a partic-
lar secondary experience (i.e., synaesthetic concurrent). Thus, a

∗ Corresponding author at: School of Psychology, Sackler Centre for Consciousness
cience, University of Sussex, Falmer, Brighton, BN1 9QH, UK. Tel.: +44 1273 876649.

E-mail address: nicolas.rothen@gmail.com (N. Rothen).

165-0270/$ – see front matter ©  2013 Elsevier B.V. All rights reserved.
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© 2013 Elsevier B.V. All rights reserved.

common standard in synaesthesia research is to use a measure of
consistency as an objective diagnostic criterion for synaesthesia.

However, there are various ways of measuring consistency. In
grapheme-colour synaesthesia, measures of consistency can be
based on different colour spaces and can utilise different distance
metrics within these spaces. To date, direct comparisons among
these methods have been lacking. Here, we determine the optimal
way of measuring consistency for grapheme-colour synaesthesia
to jointly maximise sensitivity (i.e., ability to identify true synaes-
thetes) and specificity (i.e., ability to identify non-synaesthetes).

Baron-Cohen et al. (1987) first introduced the so-called test of

“genuineness”, also referred to as the test of consistency (cf. Asher
et al., 2006 for a revised version of the test). In the original ver-
sion of the test, the participant is presented with several instances
of potential synaesthetic inducers and has to report a detailed

dx.doi.org/10.1016/j.jneumeth.2013.02.009
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:nicolas.rothen@gmail.com
dx.doi.org/10.1016/j.jneumeth.2013.02.009
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assigned to one of six different computer setups (including different
monitors and graphics cards) for this task.

1 Note that binary classification failed to provide reliable discrimination between
N. Rothen et al. / Journal of Neuro

escription of the resulting (synaesthetic) associations. The test
s repeated after a substantial gap, occurring several days to

eeks later, and at the initial test, the participant is not informed
hat they will be asked to repeat the test. The consistency of
nducer-concurrent pairings is assessed by independent raters and
xpressed as percentage of consistent pairings. While synaesthetes
an rely on their perceptual-like concurrent experiences when per-
orming such a test, non-synaesthetes are entirely dependent on
heir memory or other strategies. As such, synaesthetes generally
utperform non-synaesthetes on tests of consistency.

Contemporary research has tended to use computer-based
olour pickers rather than verbal colour descriptions, and the
est-retest interval is (for convenience) performed within a single
ession. Consistency is then calculated according to a predefined
lgorithm. Given that most forms of synaesthesia involve colour
hotisms as synaesthetic concurrents, the algorithm is usually
ased on distances (e.g., Nikolić  et al., 2011) or correlations (e.g.,
itthoft and Winawer, 2006) in colour space providing a value of

verall consistency for a set of trials.
To date, there is only one published attempt to create a standard-

sed method to present stimuli and quantify consistency (Eagleman
t al., 2007). In this study, 15 self-reported synaesthetes and 15 non-
ynaesthete controls were presented with the graphemes A–Z and
–9 in random order three times each. Participants had to pick one
olour represented in HSV (Hue, Saturation, Value) colour space for
ach grapheme.

Consistency was then calculated based on the average of
city block’ (e.g., Krause, 1987) distances in RGB (Red, Green,
lue; each from 0 to 1) space (Eq. (1)). Consistency values
f the synaesthetes and controls were continuously distributed
etween approximately 0.2 and 3.2 (with smaller numbers denot-

ng greater test-retest consistency). Even though RGB values are
evice dependent and city block distances in RGB space do not rep-
esent perceptual distances, this approach was  powerful enough
o detect the strong differences between synaesthetes and non-
ynaesthetes, with all synaesthetes performing below a consistency
alue of 1 and all controls above a consistency value of 1. Thus,

 was defined as the cut-off value. This test is freely available
nline to synaesthetes and researchers (www.synesthete.org) and
s widely used in publications (e.g., Ward et al., 2010; Brang et al.,
011). Although this approach provides a straightforward and sim-
le method of assessing potential synaesthetic experiences online,

t is desirable to optimise classification accuracy. For this reason, we
ompared different colour specifications (in terms of colour spaces
nd distance metrics) to optimise the diagnosis of grapheme-colour
ynaesthesia via the above specified standardised internet-based
est. We  hypothesised that colour specifications that better repre-
ent perceptual colour differences should provide higher diagnostic
ccuracy in terms of sensitivity and specificity. It has been pre-
iously suggested that Euclidean distances in CIELUV and CIELAB
olour space provide approximate estimations of perceptual colour
ifferences (e.g., Fairchild, 1998). Euclidean distances refer to the

inear distances in these colour spaces. Notably, CIELUV is generally
sed for emitted colours (i.e., monitors, etc.) and CIELAB for printed
olours. Hence, we expected that colour consistency measurements
ased on these colour specifications should be more accurate in
lassifying synaesthetes and non-synaesthetes than measurements
ased on other colour spaces, such as RGB and HSV, and other
ifference measures, such as city block distances, that have little
sychological meaning.

High accuracy implies high sensitivity and high specificity.
or this reason, it was our aim to evaluate the discriminative

erformance of the specified colour spaces and distance mea-
ures through the application of ROC curve analysis in binary
lassification of synaesthetes and non-synaesthetes and hence,
o provide more reliable consistency criteria for the diagnosis of
e Methods 215 (2013) 156– 160 157

grapheme-colour synaesthesia. It is important to note that we
did not attempt to specify colour representation as precisely as
possible. Rather, we were looking for the best and most efficient
way to use the internet-based standardised grapheme-colour
consistency test.

2. Method

2.1. Participants

We gathered the data provided by 154 self-declared synaes-
thetes who gave us access to their performance on the standardised
grapheme-colour consistency test (letters A–Z and numbers 0–9) of
Eagleman et al. (2007).  Only self-declared synaesthetes who picked
a colour for all three trials of at least five different graphemes
were included. Moreover, if there was  more than one dataset for
a specific synaesthete, only the first was included. A total of 144
datasets met  our inclusion criteria. Potential control participants
were interrogated about whether they experienced grapheme-
colour synaesthesia. Only people who did not report any instances
of grapheme-colour synaesthesia were recruited as controls. We
tested a total of 96 controls with the standardised grapheme-colour
consistency test. Note that the battery does not ask participants to
enter demographic details; however, with the exception of four
controls, all participants were aged 18 years or over. The youngest
of the controls was aged 11 years. All participants aged less than 18
years were accompanied by one of their parents.

2.2. Materials

We used the standardised grapheme-colour consistency test,
which is accessible via the Internet (www.synesthete.org). This test
uses the letters from A to Z and numbers from 0 to 9 as synaesthetic
inducers and possible synaesthetic colour concurrents in HSV space
(that is, colours were represented on a plane varying in lightness
along the vertical axis and in saturation along the horizontal axis
with a separate bar to adjust hue).

2.3. Procedure

Participants conducted the standardised grapheme-colour con-
sistency test via the Internet. Each participant was presented with
the graphemes A–Z and 0–9 three times in randomised order (i.e.,
108 trials). Self-declared synaesthetes were tested remotely and
followed the original instructions provided by the test to choose
the colour which most closely resembles the synaesthetic colour
associated with the presented grapheme. Controls were tested indi-
vidually, in person. To obtain a broader range of performance,
controls were randomly assigned to one of three conditions. They
were instructed by an experimenter either (1) to try to memorise
and always choose the same colour for one particular grapheme,
(2) to choose the colour which they think goes best with a pre-
sented grapheme or (3) to follow a mix  of both instructions. All
three instructions led to very similar results1.

The data for each of the different instruction groups can be found
in Supplementary Table 1. To acknowledge that synaesthetes were
tested with different computer setups, each control was randomly
the different control groups (i.e., different instructions). That is, DP was always lower
than  1, with the exception of CIELUV squared Euclidean mean, when comparing the
memory instruction to the intuition instruction (DP = 1.0104 for both), which sug-
gests that there are serious limitations to reliable classification between the various
control groups.

http://www.synesthete.org/
http://www.synesthete.org/
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.4. Analysis

The analysis was based on 4 representations of colour (RGB, HSV,
IELUV, and CIELAB), 3 measures of distance (city block, Euclidean,
nd Euclidean-squared), and 2 summary statistics (grand mean and
rand median). Thus, 24 conditions were tested in total.

.4.1. Colour representations/models
We  used RGB and HSV colour representations and two  models of

uman colour perception, CIELUV and CIELAB, as basis to calculate
onsistency scores. CIELUV and CIELAB each consist of 3 dimensions
L*, u*, and v* and L*, a*, and b*, respectively). The L* axis represents
erceived lightness and is the same in both colour spaces. The u*
nd the a* axis contrast green (negative values) against red (posi-
ive values). The v* and the b* axis contrast blue (negative) against
ellow (positive).

Colour values for RGB space were provided as part of the output
f the standardised consistency test (these values were rescaled
o that each dimension lies between 0 and 1; see also Eagleman
t al., 2007). RGB values were converted to corresponding val-
es in HSV (MATLAB R2011b), leading to values from 0 to 1 for
ach of the dimensions H, S, and V. Next, we converted RGB val-
es into CIELUV and CIELAB values. First, we linearised RGB values
y applying inverted gamma  functions (gamma  compression), and
onverted these linear RGBs into tristimulus values (XYZ; Brainard
t al., 2002). Based on these XYZ values, we calculated CIELUV and
IELAB (Hunt and Pointer, 2011, p. 55).

Obviously, we could not measure xyY primary weights and
amma  distributions of the specific monitors used by the par-
icipants because data collection was via the Internet. To obtain

onitor specifications that are most representative of a range of
andom monitors, we used standard RGB (sRGB; Stokes et al., 1996).
or this standard CRT monitor, the white-point corresponds to
tandard illuminant D65 with the chromaticity coordinates and
uminance (xyY) of [0.3127, 0.3290, 80] cd/m2. The xyY of the pri-

aries are red = [0.640, 0.330, 17.0], green = [0.300, 0.600, 57.2], and
lue = [0.150, 0.060, 5.8]. The standard gamma  function for all three
GB values is:

(i) RGBl = 1/(1+0.055) × (RGBg + 0.055)∧2.4 for RGBg ≥ 0.04045 i.e.,
for discrete RGBg > 0, and

ii) RGBl = 0 for discrete RGBg = 0;

where RGBl = linear RGB, RGBg = gamma  distributed RGB, and
GB corresponds to R, G, and B. Because the background of the
tandardised synaesthesia test was set to RGB [255,255,255], we
sed the monitor-white-point as the adaptation point for the
IELUV/CIELAB conversion.

.4.2. Consistency measures
Consistency for a grapheme was calculated only if a colour was

hosen for all three trials. Following Eagleman et al. (2007),  we cal-
ulated city block distances in RGB, HSV, CIELUV, and CIELAB colour
pace for individual graphemes according to Eq. (1) (illustrated here
sing RGB colour dimensions). We  next calculated Euclidean dis-
ances in RGB, HSV, CIELUV, and CIELAB colour space for individual
raphemes according to Eq. (2) (again illustrated using RGB colour
imensions). This procedure was repeated to calculate squared
uclidean distances (equivalent to Eq. (3) without the square root
erm) in order to place increasing weight on larger distances. To
btain a consistency measure representing the entire grapheme
et (i.e., letters and numbers), we calculated the grand average and

he grand median of the ensemble of consistency values.

 =
∑

i={1,2,3}

∣∣R1 − R2

∣∣ +
∣∣G1 − G2

∣∣ +
∣∣B1 − B2

∣∣ (1)
e Methods 215 (2013) 156– 160

d =
∑

i={1,2,3}

√
(R1 − R2)2 + (G1 − G2)2 + (B1 − B2)2 (2)

where i refers to the number running over all combinations
between the 3 trials per grapheme (i.e., trial 1 and trial 2, trial 2
and trial 3, trial 3 and trial 1).

2.4.3. Binary classification
We  applied ROC curve analysis to binary classification of self-

declared synaesthetes and non-synaesthete controls to determine,
in each condition, the cut-off value maximising sensitivity and
specificity for the given samples (Cardillo, 2006, 2008). For each
condition, sensitivity and specificity rates were calculated for all
unique consistency values, allowing identification of an optimal
cut-off value: the point with the highest true positive rate and low-
est false positive rate (see Fig. 1 top left). It is noteworthy that with
this approach, sensitivity and specificity are affected by the spe-
cific distribution of performance in the performance range of each
group rather than unequal sample sizes.

Crucially, the method enables a quantitative comparison of the
discriminatory performance of different colour models in combina-
tion with different ways of calculating consistency. Discriminatory
performance in each condition can be expressed as a single value,
referred to as Discriminant Power (DP; also known as test effective-
ness; Eq. (3)) associated with the corresponding optimal cut-off for
that condition, and which can be interpreted as the standardised
distance between the means of two  populations. DP values around
1 are regarded as not effective in discriminating between two sam-
ples. DP values around 3 are regarded as effective in discriminating
between two samples (Cardillo, 2006; cf. also Sokolova et al., 2006).

As an additional measure, the more commonly used Area Under
the Curve (AUC) is also provided. AUC is the probability of a given
consistency measure and its corresponding cut-off correctly classi-
fying a randomly drawn pair of a synaesthete and a control.

DP =
√

3
�

(log X + log Y) (3)

where: X = sensitivity/(1−sensitivity) and Y = specificity/
(1−specificity).

3. Results

Table 1 summarises the mean, SD, sensitivity, specificity, cut-
off value, discriminant power, and area under the curve for the
24 conditions tested to discriminate between synaesthetes and
controls. It is important to mention that the numerical values of
the different measures are not directly comparable because they
are based on different calculations (i.e., city block, Euclidean, and
squared Euclidean) and different colour spaces (i.e., RGB, HSV,
CIELUV, and CIELAB). The results in Table 1 are first sorted on the
basis of DP and then on the basis of AUC, with higher values indi-
cating better discrimination abilities for the associated measure.
The widely used method of Eagleman et al. (2007),  means of RGB
city block distances, was ranked 13th. Mean CIELUV and CIELAB
distances were generally ranked best among the different colour-
space/dimension alternatives. The best overall DP was  obtained
using the mean of Euclidean distances in CIELUV colour space, spec-
ifying a cut-off value of 135. Fig. 1 shows the distribution of scores
for the three best-performing measures and the original method
(Eagleman et al., 2007). Note that specificity is often higher than
sensitivity because more synaesthetes performed similarly to the

controls than controls performed similarly to the synaesthetes. It is
notable that HSV conditions performed particularly poorly. Split-
half reliability testing led to very similar results (Supplementary
Table 2).
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Fig. 1. Top left corner: An example ROC curve. The optimal cut-off value is defined as the point that results in the highest true positive rate (i.e., is highest on the vertical axis)
and  the lowest false positive rate (i.e., furthest to the left on the horizontal axis). The remaining subfigures depict the distribution of consistency scores of the synaesthetes
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nd  the controls for the top three effective discriminant measures – CIELUV Euclide
Eagleman et al., 2007), RGB city block mean, which ranked 13th. The cut-off value
istributions.

To validate the conversions from RGB to CIELUV and CIELAB
escribed above, eight synaesthetes and eleven controls were
ested on a calibrated Cathode Ray Tube (CRT) monitor under
ptimal lighting conditions. The RGB data from these participants
ere then converted to CIELUV/CIELAB using either the specifica-

ions of the calibrated monitor or the previously used standard
pecifications (sRGB). On the calibrated set-up, we  measured
onitor specifications with a ColorCal (Cambridge Research Sys-

ems, LTD, http://www.crsltd.com/tools-for-vision-science/light-
easurement-display-calibration)  colorimeter for a typical CRT
onitor. The chromaticity coordinates and luminances of this mon-

tor were [0.626, 0.337, 13.01], [0.283, 0.612, 47.84], and [0.151,
.071, 7.96] for the R, G, B primaries, respectively. The measured
hite-point of this monitor (RGB = [255 255 255]) was  xyY = [0.278,

.302, 69.75]. The ROC procedure was applied to both datasets in all
4 conditions. Both setups led to nearly identical results (Supple-
entary Table 3). Hence, accurate classification does not depend

ritically on whether the monitor has been calibrated.

. Discussion

We have described a comparative analysis of a variety of
olour-consistency tests for grapheme-colour synaesthesia, exam-
ning both different colour spaces and different distance metrics

ithin these spaces and taking advantage of ROC curve analyses
o identify those tests that maximised sensitivity and specificity
y determining an optimal cut-off value for each condition. Our
tudy further extends previous work by considering a compar-
tively large sample of self-declared synaesthetes. One recent
uggestion of Simner (2011) is that high consistency may  be a self-
ulfilling prophecy (i.e., simply because our selection criterion for
ynaesthesia specifies high consistency), but our current research,
onsidering self-declared synaesthetes, speaks against this view.
here are very few self-declared adult synaesthetes who  appear to

e inconsistent.

A first result is that the popular method of Eagleman et al. (2007)
as not the best among the measures we tested, ranking 13th

verall. With this condition, our ROC procedure on a large sample
an, CIELUV city block mean, CIELAB Euclidean mean – and for the original method
ned in Table 1 for synaesthesia versus control is taken as the intersection of these

generated a cut-off value of 1.43 for separating synaesthetes from
non-synaesthetes, which is considerably higher than the value of
1.0 recommended by Eagleman et al. (2007).  Of  course, the cut-off
value is not fixed but depends on whether the researcher is con-
cerned with specificity, sensitivity, or both (there are instances in
which a more conservative cut-off could be justified).

However, the cut-off value of 1.43 could be usefully adopted
by future researchers who  use the current online battery to diag-
nose grapheme-colour synaesthesia. In general, the most reliable
ways of discriminating between synaesthetes and controls on the
basis of consistency were based on colour differences in CIELUV and
CIELAB space, respectively. The HSV colour space did not fare well.
The superiority of CIELUV/CIELAB space may  be partially explained
by the observation that these colour spaces are coarsely percep-
tually uniform whereas RGB (e.g., Glasbey et al., 2007) and HSV
colour spaces are not perceptual at all. Note that this argument
also lends support to the perceptual quality of synaesthetic colour
experiences. Overall, Euclidean distances (which are perceptually
relevant) seemed to discriminate slightly better than city block and
squared Euclidean distances (which are not perceptually relevant).

Consistency measures based on the mean across items fared
much better than consistency measures based on the median in dis-
criminating synaesthetes from controls. Extreme inconsistencies
appear to be helpful in discriminating the groups and, as expected,
these extremes tend to affect the mean more than the median.

In summary, our recommendations for researchers when diag-
nosing grapheme-colour synaesthesia via colour consistency tests
under less controlled conditions are (1) to transform RGB values to
representations in CIELUV space, (2) to calculate the Euclidean dis-
tance between the colours selected for each specific grapheme in
that colour space, and (3) to compute the mean of the distances to
determine whether this value falls below the suggested diagnostic
cut-off value of 135. To standardise instructions for controls on the
standardised grapheme-colour consistency test, we recommend

using the following wording “Always choose the colour that you
think goes best with a particular letter or number, memorise it, and
then choose the same colour again when the grapheme reappears.”
No restrictions should be made regarding the “no colour” option,

http://www.crsltd.com/tools-for-vision-science/light-measurement-display-calibration
http://www.crsltd.com/tools-for-vision-science/light-measurement-display-calibration
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Table 1
Synaesthesia versus control. Summary of measures used to discriminate between synaesthetes and controls. Measures are sorted first according to DP (4th column) and then
according to the AUC (5th column). Higher values indicate better discrimination abilities. Sensitivity and specificity are given in per cent. Mean, SD, and cut-off values are
dependent on the specific calculation method and colour space and thus, are not directly comparable. Note, the original measure ranked 13th and is highlighted.

Synaesthesia vs control

Space Distance Descriptive DP AUC Ranking Mean (syn) Mean (con) SD (syn) SD (con) Sensitivity Specificity Cut-off

CIELUV Euclid mean 2.7217 0.9308 1 85.51 219.38 58.27 68.87 90 94 135.30
CIELUV city block mean 2.7217 0.9306 2 123.04 313.80 83.79 97.51 90 94 192.96
CIELAB Euclid mean 2.6756 0.9304 3 69.46 177.05 46.52 53.60 91 93 109.20
CIELUV sq Euclid mean 2.6305 0.9350 4 6418.21 27965.69 9117.78 12745.00 90 93 12229.15
CIELAB  city block mean 2.5957 0.9296 5 104.18 263.35 69.82 79.18 91 92 168.02
CIELAB sq Euclid mean 2.5605 0.9361 6 4152.54 18211.02 6004.18 8014.19 92 90 9282.87
RGB sq Euclid mean 2.4747 0.9296 7 0.30 1.07 0.36 0.40 88 93 0.55
CIELUV Euclid median 2.4078 0.9117 8 70.24 206.96 60.74 91.29 86 93 89.76
CIELUV sq Euclid median 2.4078 0.9114 9 3312.02 20249.66 8309.16 15841.39 86 93 3085.03
RGB  Euclid mean 2.3595 0.9236 10 0.64 1.43 0.37 0.39 88 91 0.96
CIELUV city block median 2.2894 0.9099 11 101.73 298.31 88.16 131.12 87 91 137.09
CIELAB Euclid median 2.2518 0.9084 12 57.08 165.45 47.91 69.65 92 84 87.69
RGB city block mean 2.2360 0.9232 13 0.95 2.13 0.56 0.59 88 89 1.43
CIELAB sq Euclid median 2.1815 0.9085 14 2134.11 12653.50 5400.26 9066.18 88 88 2237.83
CIELAB city block median 2.1686 0.9058 15 85.92 242.35 72.79 101.40 89 86 118.21
RGB  sq Euclid median 2.0607 0.9005 16 0.17 0.85 0.35 0.54 87 86 0.23
RGB Euclid median 2.0147 0.9006 17 0.55 1.39 0.39 0.52 83 89 0.71
HSV  Euclid mean 1.9196 0.8796 18 0.74 1.23 0.31 0.28 77 91 0.93
RGB  city block median 1.9190 0.8962 19 0.80 2.02 0.58 0.78 85 85 1.08
HSV  city block mean 1.8981 0.8866 20 0.98 1.74 0.45 0.45 76 91 1.21
HSV  Euclid median 1.8171 0.8681 21 0.57 1.16 0.35 0.39 83 84 0.82
HSV sq Euclid median 1.8171 0.8675 22 0.17 0.57 0.24 0.32 83 84 0.27
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HSV  city block median 1.7623 0.8700 23 0.78
HSV sq Euclid mean 1.7330 0.8634 24 0.42

hich involves a button to indicate that the presented grapheme
oes not have a colour association.

Although our research focused specifically on grapheme-colour
ynaesthesia, we expect that similar principles (i.e., based on

 mean of Euclidean distances in CIELUV/CIELAB space) should
pply to all other types of synaesthesia involving colour. How-
ver, additional empirical research is needed to establish where
he optimal cut-off value lies between synaesthetes and controls in
ther domains. Different inducers (e.g., musical notes, numbers, or
onths of the year) may  require different cut-off values because

ontrols may  differ in their ability to generate high levels of con-
istency depending on the type of material. Similarly, long-term
onsistency (with longer time intervals between test and retest)
ight result in different (possibly higher) cut-off values, although
e would not expect the various methods to be different in their

ffectiveness. There is also a trend for children to be less consis-
ent on such tests (e.g., Simner et al., 2009). The method that we
ave adopted based on ROC analyses will, however, be applicable

n these other domains.
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1.63 0.47 0.58 84 82 1.13
0.81 0.28 0.25 75 89 0.54
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