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Abstract

Recent research has suggested that not all grapheme-colour synaesthetes are alike. One suggestion is that they can be
divided, phenomenologically, in terms of whether the colours are experienced in external or internal space (projector–asso-
ciator distinction). Another suggestion is that they can be divided according to whether it is the perceptual or conceptual
attributes of a stimulus that is critical (higher–lower distinction). This study compares the behavioural performance of 7
projector and 7 associator synaesthetes. We demonstrate that this distinction does not map on to behavioural traits expected
from the higher–lower distinction. We replicate previous research showing that projectors are faster at naming their
synaesthetic colours than veridical colours, and that associators show the reverse profile. Synaesthetes who project colours
into external space but not on to the surface of the grapheme behave like associators on this task. In a second task,
graphemes presented briefly in the periphery are more likely to elicit reports of colour in projectors than associators,
but the colours only tend to be accurate when the grapheme itself is also accurately identified. We propose an alternative
model of individual differences in grapheme-colour synaesthesia that emphasises the role of different spatial reference
frames in synaesthetic perception. In doing so, we attempt to bring the synaesthesia literature closer to current models
of non-synaesthetic perception, attention and binding.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In recent years, the main focus of synaesthesia research has shifted away from demonstrations that the
reported phenomena are genuine (although this clearly remains crucial) towards integrating various empirical
findings within an explanatory framework. One difficulty in putting forward a coherent explanatory framework
for synaesthesia is that there are a number of findings in the literature that appear to be mutually inconsistent
with each other. For example, some studies suggest that synaesthesia can be induced pre-attentively (e.g. Smilek,
Dixon, Cudahy, & Merikle, 2001) whereas other studies do not (e.g. Mattingley, Rich, & Bradshaw, 2001). At
1053-8100/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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present, the source of these inconsistencies is unclear. However, a likely candidate for explaining the inconsis-
tencies is in terms of qualitative individual differences between synaesthetes that, otherwise, have the same pair-
ing of inducers (e.g. graphemes) and concurrent experiences (e.g. colour). The aim of the present study is to
examine these individual differences further in order to develop a new explanatory framework of one particular
type of synaesthesia; namely, grapheme-colour synaesthesia.

At present, there are two main accounts of individual differences in grapheme-colour synaesthesia. One
account, termed the projector–associator distinction, is motivated by different phenomenological reports of
synaesthetes (Dixon, Smilek, & Merikle, 2004; Smilek & Dixon, 2002). Some synaesthetes report that when
viewing visual graphemes their synaesthetic colours exist in external space and are superimposed on the text.
These have been termed projector synaesthetes. Others report experiencing colours, when viewing graphemes,
that appear in their ‘‘mind’s eye’’ or an internalised space. These have been termed associator synaesthetes. It
is to be noted that not all phenomenological reports map exactly on to this dichotomy. For example, some
synaesthetes experience colours in external space but the colours ‘‘float’’ at some fixed distance from their
body rather than exist ‘‘out there on the page’’. It remains an open issue as to how these synaesthetes should
be characterised. An alternative account has been termed the higher–lower distinction, and is motivated by
differences in the level of representation of the inducing stimulus (Ramachandran & Hubbard, 2001b). In
the terminology of Grossenbacher and Lovelace (2001) all types of synaesthesia have two essential elements:
a stimulus that triggers the synaesthesia (an inducer) and the synaesthetic experience itself (the concurrent).
Whereas the projector–associator distinction refers to differences in the concurrent, the higher–lower distinc-
tion refers to differences in the inducer. In particular, higher synaesthesia is assumed to reflect a conceptual
level of induction (e.g. the meaning of a digit) whereas lower synaesthesia is assumed to reflect perceptual pro-
cessing (e.g., of the digit’s form). Taking the validity of these distinctions at face value (for now) and assuming
them to be orthogonal, this generates four different varieties of grapheme-colour synaesthesia. However, an
alternative proposal is that these two distinctions are the same; such that all projector synaesthetes are lower
synaesthetes and all associator synaesthetes are higher synaesthetes (Dixon & Smilek, 2005; Dixon et al.,
2004). This study will empirically assess this suggestion, along with several others. Before doing so, it is impor-
tant to consider the evidence put forward so far for these distinctions.

1.1. The projector–associator distinction

Dixon et al. (2004) reported an objective measure that reliably discriminated between the 5 projector and 7
associator grapheme-colour synaesthetes that they tested. Their task was a variation on the synaesthetic ver-
sion of the Stroop paradigm that has now been used in many other studies (e.g. Mattingley et al., 2001; Mills,
Boteler, & Oliver, 1999). In the standard form of these tasks, the synaesthete must name the actual colour in
which a digit or letter is presented and ignore their synaesthetic colour. The synaesthetic colour can either be
congruent with the actual colour (e.g. a red ‘‘A’’ where their synaesthetic colour for ‘‘A’’ is red) or incongruent
with it (e.g. a green ‘‘A’’ where their synaesthetic colour for ‘‘A’’ is red). Synaesthetes are slower in the incon-
gruent relative to congruent condition implying that their synaesthetic colour is automatically elicited even
when irrelevant to the task. Dixon et al. (2004) compared the standard version of the task with one in which
the stimuli are the same but in which the instructions are reversed such that synaesthetes are required to name
their synaesthetic colour and ignore the real colour. Projector synaesthetes were faster at naming synaesthetic
colours relative to real colours, but associator synaesthetes were faster at naming real colours relative to syn-
aesthetic ones (a double dissociation). Their explanation of this is that projected colours are more automatic
because they reflect reciprocal activation between regions involved in grapheme recognition and colour pro-
cessing early in the visual stream, whereas associator synaesthetes have links with more conceptual aspects of
colour and vision that arise later. They do, however, also discuss a number of alternative explanations. For
example, the reason why associator synaesthetes may be slower at naming their synaesthetic colour could
be because their synaesthetic colour is, by definition, in a different spatial location to the attended grapheme.
Naming their synaesthetic colour would require a shift in attention from the grapheme location to the colour
location. The reason why projector synaesthetes are faster at naming their synaesthetic colour relative to actu-
al colours (the reverse dissociation) is harder to account for but may reflect that fact that their synaesthetic
colour occludes or is more vivid than the actual colour.
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A central aspect of their account of projector synaesthetes is the notion of interactive activation between
grapheme recognition and colour processing such that both occur in parallel. Early analysis of the grapheme
may trigger early colour processing before full grapheme recognition has taken place. Moreover, this early
colour processing may bias grapheme recognition itself. In support of this they show that in their projector,
C, it is harder to identify a synaesthetically blue grapheme presented in black text against a blue background
relative to when the synaesthetic colour is different from the background (Smilek et al., 2001) and that a briefly
presented grapheme is less susceptible to object substitution masking (Wagar, Dixon, Smilek, & Cudahy,
2002). The authors claim that colour processing biases grapheme recognition and, moreover, that synaesthetic
colours can be induced before conscious recognition of the grapheme (i.e. contrary to Mattingley et al., 2001).
However, the latter claim may be too strong given that the behavioural measure used in both of these tasks
was explicit identification of a grapheme. In both of these tasks, the grapheme was available to conscious
report and so it is unclear from these studies whether conscious (and unbound) perceptions of colour can
occur in situations in which the grapheme cannot be reported.

Other studies in a similar vein have measured the visual search time to (consciously) detect a grapheme in
an array of distractor stimuli. If the target, presented in a text colour that is neutral, can be detected quickly on
the basis of its synaesthetic colour this suggests that the colour is available early enough to elicit exogenous
orienting (rather than endogenous attention based on serial search). Some studies have reported that
projectors are faster/more accurate at detecting the target (Palmeri, Blake, Marois, Flanery, & Whetsell,
2002; Smilek et al., 2001, Smilek, Dixon, & Merikle, 2003) whereas other studies have not (Edquist, Rich,
Brinkman, & Mattingley, 2006; Sagiv, Heer, & Robertson, 2006a). The conditions in which the facilitation
is found differs from the comparable situation in which non-synaesthetes are assumed to detect stimuli on
the basis of pre-attentive colour recognition. In synaesthetes, it has been suggested that the location of the
target relative to fixation is important (Laeng, Svartdal, & Oelmann, 2004) and that the effect is only found
if the distractors also elicit a synaesthetic colour (Palmeri et al., 2002; Sagiv et al., 2006a). The latter has been
used to argue that facilitation in synaesthetic visual search is due to efficiency of rejecting distractors using
colour, rather than ‘pop out’ of the target on the basis of its colour. Indeed, the response times to detect a
target do show a characteristic increase with number of distractors that is indicative of serial rather than
parallel search. Although a full resolution of this debate is lacking, it is reasonable to conclude that the evi-
dence in favour of projector synaesthetes having pre-attentive perception of the colour of yet-to-be-perceived
graphemes is not as straightforward as first assumed.

1.2. The higher–lower distinction

The mechanistic explanation of the difference between projectors and associators put forward by Dixon
et al. (2004) is similar to the distinction between higher and lower synaesthetes independently put forward
by Ramachandran and Hubbard (2001b). Turning next to the higher–lower distinction, it is perhaps harder
to classify synaesthetes according to this dimension because it is based upon theoretical assumptions about
how conceptual processing may reveal itself in synaesthesia rather than pre-theoretical phenomenological
reports. In their original paper, Ramachandran and Hubbard (2001b) considered a number of factors that
may potentially discriminate between the two varieties. Firstly, some synaesthetes report the same colour
for different stimuli with the same meaning (e.g. the digit ‘‘4’’, the Roman numeral ‘‘IV’’, and four dots). Sec-
ondly, higher synaesthesia may be particularly associated with ordinal sequences. This is because ordinality is
a semantic-level property. Thus, days of the weeks and months of the year may be coloured differently from
that expected from their graphemic composition and the sequences may exist in spatial ‘forms’ as reported by
Galton (1880b, 1880a) and more recently by Sagiv, Simner, Collins, Butterworth, and Ward (2006b). In addi-
tion to these behavioural indicators, Ramachandran and Hubbard (2001b) speculate on some neuroanatomi-
cal differences. They suggest that lower synaesthesia reflects cross-activation between the fusiform region
involved in grapheme recognition and the colour area V4, whereas higher synaesthesia may reflect cross-acti-
vation between the angular gyrus (implicated in numerical cognition and spatial processing) and the superior
temporal sulcus (which they cite as a secondary colour area).

In order to test their theory, Hubbard, Arman, Ramachandran, and Boynton (2005a) observed individual
differences in brain-behaviour correlations in grapheme-colour synaesthetes. In the fMRI phase of their study
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the brain activations in a number of visual regions were contrasted when viewing black on white graphemes
(that elicit a colour) versus false fonts (that do not). It was found that whilst activity in area V4 was reliable
across synaesthetes, activity in lower visual regions (e.g. V1) differed greatly between synaesthetes. Moreover,
activity in V4 correlated with behavioural performance on a task of visual crowding performed outside the
scanner. In this task, participants are briefly presented with a grapheme presented in the periphery (left or
right side) and surrounded by a distracting grapheme. The task of the participants was to identify the briefly
presented grapheme in the centre of the distractor graphemes. They suggest that differences in the ability to
perform this task map on to the lower/projector (better performance, more V4 activity) versus higher/associ-
ator distinctions (average performance, less V4 activity). There was anecdotal report from one lower/projector
synaesthete (JAC) that he often experienced a colour and used this to infer the identity of the grapheme. Taken
at face value, this seems convincing evidence for pre-attentive synaesthetic induction of colours (Treisman,
2004). This claim is explored further in the present study.

The present study has a number of aims. Firstly, we aim to show that it is possible to behaviourally distin-
guish between projectors and associators using tasks based on those of Dixon et al. (2004) and Hubbard et al.
(2005a, 2005b). One recent study has challenged this claim and suggested that these distinctions are unstable
and/or do not produce reliable behavioural differences (Edquist et al., 2006). Secondly, we will consider
whether the projector–associator distinction is maps on to the higher–lower distinction, or whether these
are orthogonal distinctions. Finally, we present a new model of grapheme-colour synaesthesia that accounts
for the existing data and makes novel predications.
2. Case descriptions

The experiments below contrast the performance of 14 grapheme-colour synaesthetes, 7 of whom are clas-
sified as projectors and 7 of whom are classified as associators (or ‘non-projectors’). The background details of
the participants are summarised in Table 1. We classified synaesthetes as projectors if the colours elicited
during reading were subjectively localised on the text itself, rather than presence of colours in external space
Table 1
Background details of synaesthetes

Age Sex Grapheme-colour
Synaesthesia

Consistency % (test–retest time) Consistency (number and type of stimuli tested)

VE 22 F Projector 100 (4 months) N = 36; letters, digits

JH 56 M Projector 96 (6 months) N = 55; letters, digits, days, months

TD 36 M Projector 100 (2 months) N = 36; letters, digits

SN 34 F Projector 100 (16 months) N = 36; letters, digits

BJ 58 M Projector 86 (2 months) N = 36; letters, digits

ZV 18 F Projector 100 (4 months) N = 55; letters, digits, days, months

YR 26 F Projector 100 (5 months) N = 55; letters, digits, days, months

Mean 35.7 — — 96 (5.7 months) —

MKS 37 F Associator (external screen) 100 (3 months) N = 86; letters, digits, days, months, words

MOM 22 M Associator (internal screen) 82 (7 months) N = 55; letters, digits, days, months

SM 34 F Associator (knows colour) 100 (18 months) N = 67; letters, digits, days, months, words

AA 37 F Associator (internal screen) 100 (12 months) N = 55; letters, digits, days, months

JR 60 F Associator (knows colour) 96 (20 months) N = 55; letters, digits, days, months

EP 35 F Associator (external screen) 100 (3 months) N = 29; digits, days, months

TA 23 F Associator (internal screen) 86 (7 months) N = 55; letters, digits, days, months

Mean 35.4 — 95 (10.0 months)
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per se. For present purposes, we operationally define associators as ‘not projectors’ but we offer a new taxon-
omy of differences in phenomenology in Section 4. Two synaesthetes classed as non-projectors, MKS and EP,
reported colours in external space. EP perceives her synaesthetic colours on a screen located above her right
shoulder (behind her normal field of view), whereas MKS reports her colours on a screen ‘in space’ located a
fixed distance from her face and in front of her normal reading distance. Both synaesthetes experienced col-
ours on this screen when listening to speech as well as reading, suggesting that the location of the colour is not
determined by whether graphemes are visually perceived. It will be shown that behaviourally they tend to per-
form like associators who perceive colours internally.

The internal consistency of the synaesthetes was assessed over an average period of 7.8 months
(range = 2–20 months), and the mean consistency was 96% (range = 82–100%). This was assessed using ver-
bal colour descriptions. A previous sample of non-synaesthetic controls was found to have a consistency of
35.5% (SD = 13.8) when assessed over a 2 week test–retest period (reported in Simner et al., 2005). Each
synaesthete lies beyond a 2 standard deviation cutoff (P < .05) based on the control distribution of scores.
The experiments reported later (e.g. Stroop interference) provide further evidence for the authenticity of
these cases.

Our initial classification of synaesthetes was based on the subjective locations of their synaesthetic colours
when viewing visual graphemes (i.e. the projector–associator distinction). Given the suggestion that this clas-
sification may collapse on to the higher–lower distinction, we assessed the extent to which the behavioural
characteristics expected of higher and lower synaesthetes are found in projector and associator/non-projector
synaesthetes. In particular, we determined whether colours were elicited from black on white dice patterns
(N = 6) and whether the colour of written number names (N = 10; e.g. ONE, FIVE) are the same as for digits
(e.g. 1, 5). We also determined whether or not spatial forms exist for sequences (numbers, days, weeks, letters)
and the spatial location of these forms (mind’s eye versus outside the body). It is to be noted that the spatial
forms were internally generated rather than elicited from visual presentation of stimuli. As such there was no
scope for binding synaesthetic colours to a visual inducer, but it was nonetheless possible to experience colours
in external space. In addition, the colours associated with days of the week and months of the year were noted
(when they occurred) and we attempted to characterise whether the colours were derived from graphemic
properties of the word (e.g. first letter, first vowel) or whether the colour was a word-level property of the stim-
ulus (for other examples of this approach see Ward, Simner, & Auyeung, 2005). The results of these questions
are summarised in Table 2. Whilst we were not able to empirically test each and every claim, we were able to
assess their reliability over time. Most of these questions (except the dice pattern) were included on the original
questionnaire distributed to participants, and they were asked these questions again at the retest many months
later. Some of these claims have been followed up elsewhere (e.g. we have assessed TD’s synaesthesia for dice
patterns and finger counting; Ward, Butterworth, & Sagiv, in preparation).

The summary in Table 2 highlights the importance of individual differences amongst grapheme-colour syn-
aesthetes. Some synaesthetes showed the characteristics that Ramachandran and Hubbard (2001a, 2001b)
would ascribe to higher synaesthetes. For example, BWJ has the same colours for digits, dice patterns and
written number words. Moreover, days and months have colours that do not derive from the graphemic con-
stituents. Other synaesthetes have predominantly lower characteristics according to the criteria of Ramachan-
dran and Hubbard (2001a, 2001b). For example, SM does not experience colours for dice patterns and all
words (including number names, days, months) are coloured by graphemic constituents. However, there is lit-
tle to suggest that these traits are related in any way to the projector–associator distinction. It appears as if
these may be orthogonal dimensions rather than one and the same dimension as has recently been stated.
Moreover, it may be possible to exhibit characteristics of ‘higher’ synaesthesia in one respect but not another.
The presence of number forms is certainly not a unique feature of being an associator, and the location of the
spatial forms (externally or internally) does not correspond well to whether or not colours appear bound to the
page when viewing text.

The remaining experiments are extensions and replications of previous studies that have been claimed to be
sensitive either to the projector–associator distinction, the higher–lower distinction or both. Experiment 1 is
based on the Stroop experiment of Dixon et al. (2004). Experiments 2 and 3 are based on the visual crowding
experiment of Hubbard et al. (2005a, 2005b). In Section 4, we will present a revised model of grapheme-colour
synaesthesia that integrates a variety of findings.



Table 2
Higher’ and ‘lower’ characteristics of projector and associator synaesthetes

Participant Colours for number concepts?
Higher = yes, Lower = no

Spatial Forms? Higher = yes, Lower = no (location in space) Are colours for words derived from graphemic
constituents? Higher = no, Lower = yes

Dice Number names Numbers Days Months Letters Days Months

Projectors

VE L L L H (internal) H (external) H (external) L L
JH L L H (external) H (external) H (external) H (external) L L
TD H L H (external) H (external) H (external) H (external) H H
SN L L H (external) H (external) H (external) H (external) H H
BJ H H H (internal) H (internal) H (internal) H (internal) H H
ZV L L H (internal) H (internal) H (internal) H (internal) L L
YR H L H (internal) H (internal) H (internal) H (internal) H H

Associators

MKS H L L H (external) H (external) L L L
MOM H H L L L L L L
SM L L L H (internal) H (internal) L L L
AA L H H (internal) H (internal) H (internal) H (internal) H H
JR L H L H (external) H (external) L H H
EP L H L H (external) H (external) H (external) L L
TA L H L L L L H H

The presence of the following ‘higher’ characteristics was assessed: whether dice patterns are coloured the same as corresponding digits; whether number names (e.g. FIVE) are
coloured the same as corresponding digits (e.g. 5); whether spatial forms are found (and their location in space); and finally whether days and months have colours that are unrelated to
their graphemic constituents. There is no obvious link between associators and higher traits, or between projectors and lower traits.
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3. Experimental investigation

3.1. Experiment 1: Synaesthetic stroop for veridical versus photism naming

This experiment is based on that reported by Dixon et al. (2004). The aim is to establish whether the dif-
ferences between veridical colour naming and photism naming extend to the present sample of projectors and
associators, thus providing one objective correlate of their subjective reports.
3.1.1. Participants

The 14 synaesthetes previously described took part. Given that the hypothesis concerns between-group dif-
ferences amongst synaesthetes, no control group was tested.
3.1.2. Methods

The stimuli consisted of 8 different graphemes (letters and digits) that were displayed in 64 trials. For half of
the trials, the grapheme was presented in a colour congruent with their synaesthesia and for the remaining half
of the trials it was presented in a colour incongruent with their synaesthesia. In a pre-test, synaesthetes had
been asked to choose an exact colour from an RGB palette if their verbal description was ambiguous (e.g.
bluey grey). Incongruent grapheme-colour associations were formed by reassigning the same palette of colour
used in the congruent condition to a different grapheme. The 64 trials were randomised. Each trial began with
a central fixation (+) presented for 1000 ms. Following this, the grapheme was displayed against a mid-grey
background. The stimulus remained until the participant made a response into a microphone. The experiment
was repeated on two successive occasions but with the instructions varying on each occasion. Synaesthetes
were required to name either their synaesthetic colour and ignore the veridical colour, or to name the veridical
colour and ignore their synaesthetic colour. The order of the instructions was counter-balanced across
synaesthetes.
3.1.3. Results and discussion

Errors and trials in which the microphone was inappropriately triggered (e.g. because the response was too
quiet to be detected) were excluded from the reaction time analysis. Following this initial trimming, outlying
reaction times (>3 standard deviations from the mean of each participant) were also excluded. The results are
summarised in Fig. 1. A 2 · 2 · 2 ANOVA was conducted on group (projector v. associator), congruency
(congruent v. incongruent) and task-set (synaesthetic colour v. veridical colour). There was a significant main
effect of congruency (F(1,12) = 24.66, P < .001) consistent with previous demonstrations of Stroop-like
Fig. 1. Colour naming voice onset times (ms) for projector and associator synaesthetes in the tasks of naming their synaesthetic colour
(ignoring real colour) versus naming the real colour (ignoring the synaesthetic colour).
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interference in synaesthesia. There were no significant main effects of group (F(1,12) = .09, NS) or task-set
(F(1,12) = .43, NS). This suggests that, overall, the two groups of synaesthetes had similar response times
and that, overall, the tasks were of similar difficulty. However, the predicted interaction between group
· task-set was found (F(1,12) = 8.26, P < .05). This reflects the fact that the projectors were faster than asso-
ciators in naming the synaesthetic colours but the reverse was true for naming the veridical colour. No other
interactions were significant, although the interaction between congruency and group approached significance
(F(1,12) = 3.40, P = .09). The trend for projectors to name synaesthetic colours faster than real colours was
observed in 5 out of 7 cases, and the trend for associators to name real colours faster than synaesthetic colours
was also found in 6 out of 7 cases (Dixon et al. report the predicted pattern in 11 out of 12 synaesthetes that
they tested). As such, this test provides a relatively reliable way of discriminating between projectors and asso-
ciators at an individual level.

One novel aspect of the present study concerns the two cases (MKS and EP) who experience colours in
external space but in whom the colours are not subjectively bound to the grapheme on the screen/page.
Although we only had observations from two such participants, both synaesthetes were slower at naming their
synaesthetic colours relative to real colours (268 and 168 ms difference between these conditions for MKS and
EP, respectively, collapsing across congruency levels). As such, it is important to clarify that it is not the pres-
ence of externally perceived colours that determines behaviour as a projector but whether the colours are sub-
jectively bound to a visually presented grapheme. We offer an account of this in Section 4.

3.2. Experiment 2: Crowding experiment

This experiment is based on that reported by Hubbard et al. (2005a). They found that some synaesthetes
are better able than controls at detecting graphemes presented in the periphery. This ability correlated with
the degree of activity in early cortical areas in an unrelated task (passively viewing graphemes relative to
false font). The authors tested 6 synaesthetes in total and did not separate their participants according to
the projector–associator dimension. However, there is some evidence to suggest that the important individual
differences noted by Hubbard et al. (2005a, 2005b) may not map on to the projector–associator dichotomy.
Three of their participants had previously been categorised as projectors in a number of other studies (e.g.
Ramachandran & Hubbard, 2001a; Sagiv et al., 2006a). Two of these projectors (AD and JC) performed
well, but one of them (CP) had the worst performance of the group. The present experiment sets out to
explore whether performance on this task is indeed related to whether a synaesthete is a projector or not.
If projectors are able to access synaesthetic colours without consciously recognising briefly presented gra-
phemes then the prediction is that these synaesthetes should perform significantly better than associator
synaesthetes.

3.2.1. Participants
The same set of 14 synaesthetes took part as in Experiment 1.

3.2.2. Methods

The method is identical to that used by Hubbard et al. (2005a, 2005b), although we reduced the number of
trials. Four graphemes were chosen that elicited the synaesthetic colours of red, green, blue and yellow. Each
of the graphemes served as a flanker versus central character an equal number of times utilising all possible
permutations (i.e. 16). This basic set of 16 trials were repeated 8 times, 4 with the display appearing left of
fixation and 4 with the display appearing right of fixation. The order of the 128 trials was randomised. Par-
ticipants were seated 60 cm from the screen. Graphemes were presented in Arial font and subtended a visual
angle of 1.2 · 1.6 degrees with centre-to-centre spacing of letters averaging 1.4 degrees. Each trial proceeded as
follows. A central fixation cross appeared for 1000 ms, following which the display of 5 graphemes (a central
grapheme surrounded by 4 flankers) was presented for 100 ms on either the left or right of fixation. This was
followed by a pattern mask presented for 250 ms and then a prompt to type in which of the 4 digits had
appeared in the centre of the configuration. There were no time constraints imposed on responding. The par-
ticipant was instructed to fixate centrally at all times and the experimenter watched his/her eyes to try to
ensure compliance with these instructions.
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3.2.3. Results

The average percent correct for projectors was 57.0% (SD = 14.5, range = 37.5–78.9%) and for associators it
was 46.7% (SD = 17.2, range = 30.5–76.6%). These did not differ from each other (t(12) = 1.22, NS). In sum-
mary, objective performance on this task does not reliably map on to the projector–associator distinction. There
could well be some meaningful individual differences between synaesthetes as previously noted by Hubbard et al.
but these do not necessarily map on to the projector–associator distinction. Previous studies of non-synaesthetes
show a behavioural benefit in this task when graphemes are coloured (Kooi, Toet, Tripathy, & Levi, 1994). If
projectors were able to induce synaesthetic colours pre-attentively then a behavioural benefit would be predicted
for them, similar to that found for control participants when graphemes are coloured. Although the trend does
go in this expected direction, subsequent replications (Experiment 3) show a trend in the reverse direction.

Although we failed to provide any behavioural evidence for a difference between projectors and associators,
they reported different phenomenology during the task. At the end of the task, the synaesthetes were debriefed
as to whether they experienced colours during the task. All 7 of the projector synaesthetes claimed to have had
colour experiences during the task whereas only 1 associator claimed this. Whilst we cannot verify these
claims, it does leave us with a paradox. If colours were experienced, why were not they helpful for identifying
the grapheme? A number of options can be considered. Firstly, the flash of colour may have been too brief for
them to commit to memory (or may have been over-ridden by the mask). Secondly, they may have experienced
colours that were inappropriate (e.g. because the grapheme was partially recognised or mis-identified).
Thirdly, it could be that colours were only experienced when also accompanied by conscious perception of
a grapheme (as suggested by Mattingley et al., 2001). Thus, the colour would carry no added value in
identifying the grapheme. Finally, it could be that they experienced colours but were unable to discern the col-
our of the central grapheme from that of the flankers. As such, the results of Experiment 2 are inconclusive.
There are apparent phenomenological differences between projectors and associators on this task but it is not
obvious how this affects behaviour, if at all. Experiment 3 was designed to clarify this issue.

3.3. Experiment 3: Crowding with non-graphemic distractors

The previous experiment found that projectors and associators did not differ, as groups, on their ability to
detect a grapheme presented in the periphery and surrounded by distractor graphemes. However, the two
groups did reliably report some phenomenological differences when debriefed. Namely, projectors reported
experiencing colours during the task. Experiment 3 attempts to explore this finding by eliciting subjective
reports, as well the behavioural measure, on a trial-by-trial basis. Specifically, participants will be asked after
each trial whether they saw the grapheme, the colour, both or neither. Some studies have claimed that synaes-
thetes may be able to experience synaesthetic colours in the absence of grapheme perception whereas others
claim that they do not. However, no previous study has compared groups of projectors and associators (dem-
onstrating that a single projector shows the effect does not rule out the possibility that associators also show
the effect, or that some projectors fail to show the effect). It is possible that the reason that projectors do not
benefit from the additional presence of colour is that colour is only present on those trials in which the graph-
eme itself can be correctly identified. This would suggest an individual difference between projectors and asso-
ciators, although the difference would not lie in whether colours are induced pre-attentively. Given the lack of
a behavioural difference in the previous experiment, we also modified the nature of the distractors. It is pos-
sible that the null result in Experiment 2 arises because the projectors are unable to determine whether the
perceived colour is elicited by the target or distractor grapheme. This was assessed by varying the graphemic
status of the flanking distractors. In one test, the surrounding distractors were nonsense symbols. If there were
competition between the colour of the target and the colour of the distractor then performance should be
enhanced if the distractors do not elicit synaesthesia. This is compared to a separate condition in which
one of the distractors is a grapheme and three of the other distractors are meaningless, and synaesthetically
colourless, symbols. Examples of the stimuli used are shown in Fig. 2.

3.3.1. Participants

The same set of 14 synaesthetes took part as before. In addition, a set of 14 control participants
were recruited to determine whether synaesthetes (as a group) show an advantage on the task. The



Fig. 2. An example of the stimuli used in Experiment 2 (left) and Experiment 3 (centre and right).
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control participants consisted of 3 males and 11 females with an average age of 38.4 years (range = 20–67
years).

3.3.2. Methods

A similar method was used to that reported in Experiment 2 except in two key respects: the nature of the
distractors were changed, and subjective reports were obtained on a trial-by-trial basis. The present
experiment was divided into two blocks of 128 trials. In one block the centrally presented grapheme was sur-
rounded by four meaningless symbols that did not induce synaesthesia. There were four different symbols used
(e.g. /n, j�, /}, n^). On a given trial, only one of these symbols was used. As such, the experiment was similar in
design to Experiment 2 and also Hubbard et al. (2005a, 2005b). In the second block, the distractors were com-
posed of three copies of the same meaningless symbol together with a distractor grapheme (one of the three
non-presented graphemes). The distractor grapheme, meaningless symbol and target grapheme appeared
equally often in all permutations except that we avoided situations in which the target grapheme and the dis-
tractor grapheme was identical (unlike in Experiment 2 and in Hubbard et al., 2005a, 2005b). The distractor
grapheme appeared in each of the four possible flanker locations equally often. The procedure for each trial
was the same as in Experiment 2, except that after choosing the grapheme the participant was asked about
their phenomenological experience. They were given 4 options: (1) they saw a colour and saw the grapheme,
(2) they saw the colour but not the grapheme, (3) they saw the grapheme but not the colour and (4) they saw
neither (i.e. guessing). Experiment 2 suggested that projectors are more likely to report experiences of colour
but this does not distinguish between options (1) and (2) above, which would suggest different theoretical
explanations. The procedure for the controls was identical except for the omission of the phenomenological
reports. Each control participant was closely age and sex matched to an individual synaesthete and was shown
the set of four graphemes as were displayed to that synaesthete.

3.3.3. Results

In terms of behavioural differences, these were analysed as a 2 · 2 · 2 ANOVA comparing group (synaes-
thete v. control), type of synaesthete/control (projector v. associator) and the nature of the distractors (4 non-
sense flankers v. 1 graphemic flanker and 3 nonsense flankers). The results are summarised in Fig. 3. There was
a significant main effect of type of distractor (F(1,24) = 39.69, P < .001) but no main effect of type of synaes-
thesia (F(1,24) = .43, NS) and no main group difference between synaesthetes and controls (F(1,24) = .15,
NS). No interactions were significant or approached significance. If projectors were experiencing colours in
a way that was similar to non-synaesthetes presented with truly coloured stimuli then we would expect them
to perform better on this task, because the colour could be used to infer the identity of the grapheme. This
would be expected to be particularly apparent in the condition in which only non-graphemic distractors are
present.

Although these group results do not support our hypothesis that projectors outperform associators, a more
interesting picture emerges when one contrasts behavioural performance with the phenomenological reports
elicited on a trial-by-trial basis. As before, projectors are far more likely to report colour sensations than asso-
ciators although they do not do so on each and every trial. Table 3 shows the proportion of trials in which
synaesthetes reported perceiving a grapheme and/or colour. One of our projectors failed to report colours
when performing the task, but all of the remaining 6 projectors reported colours with four of them reporting
colours in the absence of overt recognition of a grapheme. Only 1 of the associator synaesthetes reported expe-
riencing colours during the task, although this was always accompanied by reports of also perceiving the
grapheme (and of high accuracy). As such, there is a high degree of inter-subject agreement within but not



Fig. 3. The ability to identify a grapheme presented in the periphery (% correct, error bars show 1 SD) when surrounded by non-
graphemic distractors or by a single grapheme and 3 non-graphemes.

Table 3
Percentage of trials in which synaesthetes report perceiving colours and/or graphemes (Experiment 3)

Single grapheme flanker Non-graphemic flankers

Projector Associator Projector Associator

See colour, see grapheme 32.1 7.6 27.0 6.8
See colour, not grapheme 34.5 0.3 29.7 0.1
See grapheme, not colour 20.4 40.0 24.2 50.0
See neither (guessing) 12.9 52.1 19.1 43.1
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across different types of synaesthete. A 2 · 2 ANOVA was performed, with the number of trials in which col-
ours were reported (either with or without perception of a grapheme) as the dependent measure. The two inde-
pendent variables were the type of synaesthete and the nature of distractors. The ANOVA confirmed that
projectors are more likely to report colour experiences than associators (F(1,12) = 15.63, P < .005). There
was also a significant main effect of the type of distractor (F(1,12) = 5.92, P < .05) suggesting that colours were
more likely to be reported when one of the flankers was graphemic. The interaction was of borderline signif-
icance (F(1,12) = 3.94, P = .07).

Given that the phenomenological reports were obtained on a trial-by-trial basis, it is possible to back sort
the trials according to whether reports of colour experiences are associated with greater accuracy, or whether
more accurate trials are likely to be associated with reports of colour. This analysis is reported in Table 4 for
the six projectors who reported colour experiences. Considering the condition in which all flankers were non-
sense stimuli, trials in which the grapheme was correctly reported were more likely to also be associated with
reports of colour experiences than trials in which the grapheme was incorrectly reported. However, the reverse
Table 4
Conditional probabilities that a colour is reported given a correct or incorrect target identification, and conditional probabilities that a
correct target is chosen given the presence or absence of colour report

Single grapheme flanker Non-graphemic flankers

Probability (%) Significance Probability (%) Significance

P (+colour j correct) 80.8 t(5) = 1.36, NS 74.8 t(5) = 4.59, P < .01
P (+colour j incorrect) 75.1 54.1
P (correct j +colour) 44.9 t(5) = 0.84, NS 63.9 t(5) = 1.30, NS
P (correct j �colour) 40.6 56.6

The data is taken from 6 projectors who report colour experiences during the crowding task.
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does not hold true. Trials in which a colour is reported are not necessarily more accurate than trials in which
no colour is reported. As such, behavioural performance is predictive of phenomenological reports but phe-
nomenological reports do not significantly predict behaviour. The situation is less clear when one considers the
condition in which a single grapheme was present amongst the flankers, as neither accuracy predicted colour
reports nor did colour predict accuracy. However, it is to be noted that those trials in which a colour was
reported even though an incorrect grapheme was chosen (i.e. P(+colour | incorrect) = 75.1%), are comprised
of trials in which the incorrect response was to the flanker grapheme (P(+colour | flanker chosen) 80.2%) ver-
sus those in which one of the non-presented graphemes was chosen (P(+colour | non-presented grapheme cho-
sen) 69.4%). If the latter figure is considered then there is a borderline significant result for a colour to be
elicited on a correct trial relative to an incorrect trial in which the synaesthete selects a non-presented graph-
eme (t(5)2.33, P = .068; the trend is found in 5 out of 6 of the projectors considered). As such, on this second
version of the task there is also some evidence of a relationship between accuracy of grapheme identification
predicting the likelihood of colour perception (but not vice versa), as in the first task, although the results are
partly obscured by the fact that the flanker also tends to elicit a colour and is often incorrectly chosen.

In summary, Experiment 3 has allowed us to clarify why reports of colour experiences cannot be used to
boost accuracy in projectors as would be predicted if grapheme-appropriate colours were elicited even if the
grapheme cannot be reported. Firstly, many of the colours are not appropriate to the grapheme that was actu-
ally presented (e.g. 54% of incorrect trials are noted to elicit a colour experience even when no grapheme is
presented amongst the flankers). We can only speculate on why this might be. It is possible that features within
the graphemes and flankers (i.e. oriented lines) either mis-combine or are sufficient in themselves to trigger a
colour. However, this is odd given that false fonts and oriented lines do not elicit colour under free view con-
ditions. In the crowding task, the synaesthetes are primed to expect to see one of four known graphemes and
perhaps this is why partial visual information may trigger colour under these circumstances but not during free
view. A second reason why colour experiences may not boost accuracy is that on many trials a colour expe-
rience may accompany accurate recognition of the grapheme but not necessarily precede it. Evidence for this
comes from the fact that behavioural performance predicts the probability of reporting a colour but not vice
versa (this result being more reliable on the meaningless flanker task). Finally, having a grapheme amongst the
flankers is more likely to elicit a colour report, and projector synaesthetes find it hard to discriminate which
grapheme is central or on the periphery of the configuration even when colours are noted. This suggests that
colours are not pre-attentively bound to spatial locations in projector synaesthetes.

There is evidence that projector synaesthetes experience colours earlier than associators, but claims that
these colours are appropriate for the grapheme (and hence can guide grapheme identification) or claims that
graphemes and colours are bound together pre-attentively have been over-stated. Although the lack of differ-
ence in accuracy between projectors and associators is a null result (and therefore does not warrant strong
claims), the significant relationship between accuracy of grapheme recognition and phenomenological reports
of colour in projectors, but not associators, does provide an important source of constraint on models of
grapheme-colour synaesthesia. Section 4 offers a new model of different varieties of grapheme-colour synaes-
thesia that links together the empirical evidence to date.

4. General discussion

The main finding that we wish to emphasise is that differences between grapheme-colour synaesthetes are
real, insofar as different phenomenological reports can be associated with different behavioural profiles and
that there is a high degree of inter-subject reliability between synaesthetes with the same profile. This contrasts
with the alternative view that differences are variable over time (within individuals) and do not map on to dif-
ferences in behaviour (between individuals, e.g. Edquist et al., 2006). We have observed that synaesthetes
struggle to find the words to describe their experiences, and the same terms are often used to denote different
things. For example, many synaesthetes restrict the use of the term ‘‘mind’s eye’’ to denote internalised space,
but others may use it to describe synaesthetic perception regardless of spatial location. This can undoubtedly
lead to inconsistencies in categorising synaesthetes whose experiences are nonetheless stable.

It is also possible that differences in phenomenology extend beyond the projector–associator dichotomy.
For example, our research suggests a distinction between projectors who experience colour on the surface
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of a page (which we propose to call surface-projectors)1 and those who experience colour in externalised near
space (which we propose to call near space-projectors). On the task of Dixon et al. (2004), near space-projec-
tors behave like associators. It remains to be determined if and how these two groups can be empirically dis-
criminated. Moreover, it might be possible to empirically discriminate between associators who claim to see
colours in some internal space (which we propose to call see-associators) and those who claim to know the
colour of a grapheme (which we propose to call know-associators). This is in line with suggestions made
by Block (2005) concerning dissociable mechanisms underlying phenomenal and access consciousness. Alter-
natively, perhaps these differences reflect individual differences in the way synaesthetes describe their experi-
ences (e.g. some synaesthetes are more reluctant to over-extend the verb ‘to see’). Moreover, none of these
reported phenomenological differences map convincingly on to the higher–lower distinction although this dis-
tinction may nonetheless be useful and valid.

At this stage in synaesthesia research, what is needed is not an expanding list of differences but rather a
coherent model in which differences may be explained. The model that we put forward to account for individ-
ual differences in grapheme-colour synaesthesia is summarised in Fig. 4. The core characteristics and assump-
tions of the model are listed as follows and will be described in detail in turn.

(1) There are different spatial frames of reference that exist in the brain. These may support normal imagery
and perception as well as synaesthetic imagery and perception.

(2) The spatial reference frame that is evoked during synaesthesia differs from case to case (e.g. surface-pro-
jector v. associator), and from context to context (e.g. seeing v. hearing). The difference between projec-
tors and associators primarily reflects differences in the spatial reference frame evoked during viewing
text rather than differences in attentive v. pre-attentive processing or perceptual versus conceptual pro-
cessing of the inducer.

(3) Attention operates over spatial frames of reference (as in non-synaesthetic perception) and all types of
projector and associator synaesthetes require attentional mechanisms for accurate grapheme-colour
binding. However, the attentional demands may not be identical in both types of synaesthesia (e.g. asso-
ciators require dividing or shifting attention between different frames of reference).

(4) In principle, the distinction between higher and lower synaesthesia could reflect the degree of connec-
tivity from the grapheme area to colour-responsive regions (lower synaesthesia) versus the degree of
connectivity from conceptual representation to colour-responsive regions (higher synaesthesia). This
is similar to what has been suggested before. In practice, the distinction is hard to pin down because:
conceptual processing is automatic and inevitable, and there are no reported cases of synaesthetes
who fail to show effects of context (e.g. given ambiguous stimuli).

With regards to the first aspect of the model (i.e. the existence of different spatial reference frames), this is
well supported by evidence from neuropsychology and primate single cell recordings. For example, disorders
of spatial attention such as hemi-spatial neglect reveals double dissociations between external space and imag-
inal or ‘representational’ space (Bartolomeo, 2002; Denis, Beschin, Logie, & Della Sala, 2002), between body-
space and peri-personal space (Cocchini, Beschin, & Jehkonen, 2001; Guariglia & Antonucci, 1992), between
near and far external space (Halligan & Marshall, 1991; Vuilleumier, Valenza, Mayer, Reverdin, & Landis,
1998) and between object-centred space and between-object space (Humphreys & Riddoch, 1994). The
assumption that synaesthetic perception and imagery utilises the same spatial frames of reference as other
forms of perception is less well grounded empirically. Our main motivation for assuming this is on the grounds
of parsimony—namely that is desirable to explain as much as possible within a theoretical framework of nor-
mal cognition without needlessly postulating special mechanisms for synaesthetes. It does, however, lead to
some interesting and novel insights as outlined below (e.g. concerning the projector/associator distinction).
There is some empirical evidence from synaesthetes to suggest the importance of regions in posterior parietal
cortex that are implicated in normal binding mechanisms (Esterman, Verstynen, Ivry, & Robertson, 2006) and
1 An alternative term might be type-face projectors, but we have chosen to emphasise the space in which the colour is experienced rather
than the object itself. Other surface-projectors might, for example, experience synaesthetic colours on the surface of faces rather than text.



Fig. 4. A model of individual differences in grapheme-colour synaesthesia that takes into account different spatial frames of references
(this explains many phenomenological differences) and different levels of induction (this may account for some features of the higher–lower
distinction; H = higher, L = lower). The top and bottom models depict surface-projectors and see-associators respectively. The choice of
spatial reference frames may depend on the task (e.g. reading v. thinking) as well as being idiosyncratic to a given synaesthete.
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are frequently lesioned in cases of hemi-spatial neglect (Mort et al., 2003). A recent rTMS study disrupted
syanesthetic Stroop interference when applied over right posterior parietal cortex (Esterman et al., 2006). This
study was based on two surface-projector synaesthetes but another study has established that this region is
important in associators (Muggleton, Tsakanikos, Walsh, & Ward, in press).

The notion of different spatial frames of reference goes a long way in explaining the phenomenology of syn-
aesthetic experiences. Our assumption is that surface-projectors evoke an externalised frame of reference
defined relative to the location of written words; near space-projectors evoke an externalised frame of refer-
ence defined relative to their body location (e.g. ‘‘12 inch in front of me’’); see-associators evoke an interna-
lised frame of reference (e.g. that normally supports visual imagery); and know-associators perhaps do not
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link their colours to any spatial reference frame or are the same category as see-associators. Some other asso-
ciators also describe the location of their photisms as located within their body itself (e.g. ‘‘literally feels like in
my head, a few centimetres behind my eye’’), and these may evoke a body-based frame of reference. Future
studies should attempt to directly manipulate the spatial reference frame that is attended in order to test this
theory.

We explain the slowness in naming synaesthetic colours relative to real colours (Experiment 1) that is found
in associators in terms of shifting attention from one spatial reference frame to another. In order to name their
synaesthetic photism, they must attend to the grapheme located on the computer screen and then retrieve the
corresponding colour from a different spatial location (their ‘‘mind’s eye’’). The same applies to near space-
projectors who may also have to disengage attention from the grapheme location to the photism location. This
is why these participants behave more like associators than surface-projectors on this task. For surface pro-
jectors, the synaesthetic photism is in the same location as the attended grapheme and this may enable more
efficient naming of the synaesthetic colour relative to their associator counterparts. This leads to testable pre-
dictions. Associators should show neural correlates consistent with shifting between spatial locations/reference
frames in photism naming but this should not be found in veridical naming or in the same tasks involving
surface-projectors. Note that synaesthetic colours may be ‘perceptually real’ for both projectors and (at least
some) associators. Hence, activation in regions such as V4 may be observed for associators too, although the
colours may be perceived at different spatial locations. In the proposed model, the term ‘perceptually real’
becomes redundant because all types of synaesthesia involve aspects of perception, but they do so in different
ways. The reason why surface-projectors are actually faster at naming synaesthetic colours relative to real col-
ours is harder to explain—not just by the present model but also by all current models. Having the real and
synaesthetic colour in the same location may lead to a competitive interaction in which the synaesthetic colour
dominates over the real colour (e.g. the synaesthetic colour partially obscures or is more vivid than the real
colour).

Other phenomena may also be accounted for in this framework. For example, it has been claimed that
detecting a grapheme (Hubbard, Manohar, & Ramachandran, 2006) or judging the colour of a grapheme
(Witthoft & Winawer, 2006) is affected by the background contrast (e.g. whether displayed on white or grey)
in the two surface-projectors studied. This suggests that some synaesthetes are affected by contrast dependent
stages of visual processing. This could be explained because both grapheme and background lie in the same
spatial frame. The same may not be found for associators (although this remains to be shown) because their
synaesthetic colour lies in a different spatial location to the external surface in which contrast is manipulated.

In this model, the defining feature of a surface-projector is the binding of colour to the location of an object
in external space. However, we are agnostic about what this representation of external space consists of and
where it may be located in the brain. Area V1 contains a representation of visual external space, but it is not
the only region to do so. The activation of V1 could vary within a given group of projectors (e.g. as found in
Hubbard et al., 2005a, 2005b), and could possibly be found in some near-space projectors (e.g. MKS who sees
colours on a floating external screen). Perhaps some synaesthetes will show a dissociation between colours in
near external space and far external space, as reported in the neuropsychology literature (Vuilleumier et al.,
1998) and single cell recording literature (Iriki, Tanaka, & Iwamura, 1996).

The distinctions between different spatial reference frames are likely to extend beyond grapheme-colour
synaesthesia and could possibly be applied to all types of synaesthesia. Thus, the case of taste-colour synaes-
thesia reported by Downey (1911) experienced colours inside his/her mouth (a body-based spatial reference
frame) although other cases we have observed experience them in their internal ‘‘mind’s eye’’. Similarly, with
spatial number forms these can be experienced in coordinates in near space relative to ones body or on some
other inner screen (Sagiv et al., 2006b). The present study suggests that the location of spatial forms are inde-
pendent of the location of synaesthetic photisms induced by visual grapheme recognition. That is, the spatial
reference frame that is evoked is both task-dependent (e.g. recognising visual graphemes versus conceptualis-
ing time) and idiosyncratic to a given individual. The projector SN, reported in this study, also experiences
projected colours when watching someone speak. Coloured written words are seen as emanating from some-
one’s mouth as they speak and the words drop away towards the lower right of the speaker’s mouth. Of the
other synaesthetes that we tested, all report colour to be on an internalised or external body-centred space
when listening to speech. Finally, we have observed an equivalent of the projector–associator distinction in
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individuals who experience taste from written and spoken words (lexical-gustatory synaesthesia).2 Many of
these individuals, including JIW whom we have studied at length (Ward & Simner, 2003; Ward et al.,
2005), insist that their experiences of flavour are subjectively located in their mouth. For other synaesthetes
that we have observed, the experiences are described as complex food associations but they are not subjectively
felt in the mouth (these synaesthetes often describe it as a form of ‘knowing’ that does not have spatial
location).

The explanation that we have put forward could be viewed as complicating rather than simplifying insofar
as it leads to a proliferation of the number of varieties of synaesthesia beyond a projector–associator dichot-
omy. However, we feel that the model we have proposed has important advantages: it accounts for more sub-
tle differences between grapheme-colour synaesthetes; it offers a way of expanding the theoretical framework
to other types of synaesthesia (e.g. involving taste or number forms); and it is explicitly based on theories
derived from the non-synaesthesia literature.

There appears to be a tendency in the literature to regard projector synaesthetes as providing an example of
anomalous binding, whereas associator synaesthetes are assumed to experience unbound colours. However, at
least from a phenomenological point of view, this is not strictly accurate. Most associators claim to see a col-
oured copy of the grapheme in their minds eye.3 Thus, they do report that colours are bound to a grapheme but
it is the spatial location of the grapheme that differs from surface-projectors. Both represent cases of graph-
eme-colour binding. This preamble leads on to the third claim made by our model, namely that all types of
grapheme-colour synaesthesia require attention to enable accurate binding of graphemes with colours. Atten-
tion is assumed to operate over spatially coded reference frames as suggested by the non-synaesthetic literature
(Treisman, 1988; Treisman & Gelade, 1980). However, the attentional demands may not be equivalent in all
types of synaesthesia. For example, consider the task of naming synaesthetic photisms. As already mentioned,
for an associator this task would involve identifying the grapheme in external space followed by shifting (or
dividing) attention to a different spatial reference frame in order to produce the colour. In our second task,
involving briefly presented crowded graphemes in the periphery, we would have expected surface-projectors
to outperform associators if they were able to use pre-attentively induced colours to infer the identity of
the grapheme. This was not found, even when the graphemes were crowded by flankers that did not induce
synaesthesia. Nonetheless, surface-projectors (but not associators) do report colours when performing the task
even if they claim to not have seen the grapheme. However, the colours are not necessarily appropriate to the
grapheme that was actually shown and colours were more likely to be reported on trials in which graphemes
were accurately seen than those in which they were not. As such, a reasonable interpretation of this data is that
synaesthetic colour induction arises early in grapheme processing (at least in surface-projectors) but is not nec-
essarily appropriate until such time as grapheme recognition is also accurate. This is similar to the notion of a
cascade of activation proposed by Smilek et al. (2001). Like Smilek et al., we argue that synaesthetic colour
induction may begin before processing of the inducer is complete. However, we claim that the actual colour
elicited will not necessarily be appropriate unless grapheme recognition has progressed to such a stage as for
the grapheme to be identifiable and, furthermore, that a unified percept of grapheme and colour bound to the
same spatial location requires attentional mechanisms. If there are two graphemes presented in the periphery,
then it is possible that several synaesthetic colours are induced but attention is needed to attribute them to the
correct spatial location (i.e. target versus flanker). For associators, it is conceivable that colours are also
induced early but that the colours are less likely to be noticed given that they are located elsewhere. An alter-
native scenario is that for these synaesthetes, synaesthetic colour induction occurs after conscious grapheme
perception (e.g. Mattingley et al., 2001). At present, we cannot distinguish between these hypotheses although
2 The distinction between lexical-gustatory synaesthetes who ‘know’ versus ‘perceive’ the flavour arose out of discussion with Dr. Julia
Simner.

3 In a sample of 31 grapheme-colour synaesthetes whom we have classified as associators, 61% claim to see a coloured copy of the
grapheme in their ‘‘mind’s eye’’, whereas only 6% claim to see blocks of colour that do not take the shape of the grapheme. The remaining
32% claim to have a strong sense of ‘‘knowing’’ the colour but claim not to ‘‘see’’ it. These participants are harder to classify/explain
although their colours are often as precise as other synaesthetes. It is conceivable that these synaesthetes activate colour representations
from graphemes but do not link them to any spatial frame of reference. It would be interesting to contrast these different types of
associator experimentally.
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we favour the hypothesis that attention is necessary for all types of synaesthesia but that different attentional
demands arise from different spatial considerations.

The fourth aspect of the model concerns how we may account for differences between higher and lower syn-
aesthetes. Most of the empirical demonstrations above refer specifically to the projector–associator distinc-
tion, so our comments on the higher–lower distinction remain more speculative. Stimuli such as numbers
exist not only as units of visual recognition (i.e. digits) but also have a conceptual representation in terms
of cardinality (denoting the size of a collection) and ordinality (denoting the position in a sequence). The higher–
lower distinction highlights the importance of these conceptual aspects in synaesthesia and there is good rea-
son why it does so. Recent prevalence studies have suggested that the most common types of synaesthesia are
to ordered sequences, particularly for time units such as days and months eliciting colour (Simner et al., 2006).
Spatial forms involving number, time and the alphabet are even more common and tend to co-occur with each
other (Sagiv et al., 2006b). These may well involve circuits within the parietal lobe that represent aspects of
number, space, and colour-form binding (Hubbard et al., 2005b). The specific aspect of the higher–lower dis-
tinction that we wish to dispute here is whether or not it maps on to the projector–associator distinction, and
we argue that it does not. Experiencing spatial forms for numbers and time units does not closely map on to
this distinction, and nor does the spatial location of the forms (i.e. whether the time line is perceived in external
or internal space). Other evidence is consistent with this. Case studies of projectors have shown that magnitude
judgments can be biased if the colour of the stimuli correspond to the colour of numbers (Cohen Kadosh &
Henik, 2006; Cohen Kadosh et al., 2005). This suggests a close link between colour and the meaning of num-
bers in some projectors (i.e. they are unlikely to be ‘lower’). Also, Stroop-like effects can be elicited from an
arithmetic sum (e.g. 5+2) in which a quantity is implied (i.e. 7) but not seen, both in projector synaesthetes
(Dixon, Smilek, Cudahy, & Merikle, 2000) and associator synaesthetes (Jansari, Spiller, & Redfern, 2006).
This would not be expected if projectors were lower synaesthetes in whom colour was linked to the physical
form of the digit rather than conceptual aspects of number.

Although conceptual properties of a stimulus may be important in synaesthesia, it is an open question
whether ‘higher synaesthesia’ should be regarded as a discrete entity or whether it could be fractionated.
For example, maybe some synaesthetes are ‘higher’ in the sense of possessing spatial forms (linked to ordinal-
ity) and other synaesthetes are ‘higher’ in the sense of showing priming of colours from a number concept (e.g.
‘‘5+2’’ primes the colour of 7). It is also possible that many synaesthetes have mixed ‘higher’ and ‘lower’
aspects. For example, Ramachandran and Hubbard have speculated that coloured spatial number forms
reflect cross-activation between number areas (parietal) and secondary colour areas (temporo-parietal). How-
ever, an alternative scenario is that they reflect two events: cross-activation of number and space (parietal,
‘higher’) and cross-activation of digits and colour (fusiform, ‘lower’). In the model outlined in Fig. 4, it is sug-
gested that most cases of grapheme-colour synaesthesia may involve a mixture of conceptual and non-concep-
tual influences although the balance between them may differ from case to case. It is also likely that there are
direct interconnections between numerical concepts (drawn at the top of our model) and spatial reference
frames (drawn at the bottom of the model) that arise from their proximity within the parietal lobes (Hubbard
et al., 2005b; Walsh, 2003).

In summary, we conclude that differences between grapheme-colour synaesthetes are real and important.
We suggest that many of these differences arise from differences in the spatial reference frame utilised by
the synaesthesia during a given task (e.g. viewing graphemes, hearing, tasting). This model could potentially
be adapted to incorporate all other types of synaesthesia given that virtually all synaesthetic percepts have a
strong spatial component.
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